Abstract
ABSTRACT Metal responsive transcription factor 1 (MTF-1) is a zinc-dependent transcription factor involved in the development of pulmonary arterial hypertension (PAH), which is a life-threatening disease characterized by elevated pulmonary artery pressure and pulmonary vascular remodeling. However, little is known about the role and regulatory signaling of MTF-1 in PAH. This study aimed to investigate the effect and mechanism of MTF-1 on the proliferation of pulmonary arterial smooth muscle cells (PASMCs). Several techniques including intracellular-free zinc detected by fluorescent indicator-fluozinc-3-AM, western blot, luciferase reporter, and cell proliferation assay were conducted to perform a comprehensive analysis of MTF-1 in proliferation of PASMCs in PAH. Increased cytosolic zinc was shown in monocrotaline (MCT)-PASMCs and ZnSO₄-treated PASMCs, which led to overexpression and overactivation of MTF-1, followed by the up-regulation of placental growth factor (PlGF). Elevated MTF-1 and PlGF were observed in western blot, and high transcriptional activity of MTF-1 was confirmed by luciferase reporter in ZnSO4-treated cells. Further investigation of cell proliferation revealed a favorable impact of zinc ions on PASMCs proliferation, with the deletion of Mtf-1/Plgf attenuating ZnSO4-induced proliferation. Flow cytometry analysis showed that blockade of PKC signaling inhibited the cell cycle of MCT-PASMCs and ZnSO4-treated PASMCs. The Zinc/PKC/MTF-1/PlGF pathway is involved in the up-regulatory effect on the PASMCs proliferation in the process of PAH. This study provided novel insight into zinc homeostasis in the pathogenesis of PAHs, and the regulation of MTF-1 might be a potential target for therapeutic intervention in PAH.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.