Abstract

Pretreatment with zinc produces tolerance to several cadmium toxic effects. This study was performed to further elucidate the mechanism of zinc-induced tolerance to cadmium cytotoxicity in a rat hepatic stellate cell line (CFSC-2G). Twenty four hours after seeding, cells were treated with 60 micromol/L ZnCl2 for 24 h. Following zinc pretreatment, cells were exposed to 3 micromol/L and 5 micromol/L CdCl2 for an additional 24 h. The toxicity of cadmium was significantly reduced in the zinc-pretreated cells. Zinc pretreatment produced a decrease in lipid peroxidation damage of cadmium-treated cells. Glutathione cell content diminished 33% and 43% as a result of 3 micromol/L and 5 micromol/ L CdCl2 treatment, respectively. Cell pretreatment with zinc recovered glutathione content at control cells level. Catalase and glutathione peroxidase activities were also recovered to control values with zinc pretreatment. Cadmium (5 micromol/L) was able to induce 39% the expression of alpha1 collagen (I) gene after 1 h treatment, while zinc pretreatment prevented this cadmium profibrogenic effect. We also examined the production of heat shock protein 70 (Hsp70) as a cellular response to oxidative stress produced by cadmium. By Western blot analysis, a 1.3 and 3 times increment in Hsp70, with 3 micromol/L and 5 micromol/L CdCl2 treatment, respectively, was observed. Zinc pretreatment prevented the production of Hsp70. Metallothionein-II (MT-II) gene expression was induced by cadmium, but the induction was unaffected with zinc pretreatment. These data suggest that zinc-induced protection against the cytotoxicity of cadmium in stellate cells may be related to the maintenance of normal redox balance inside the cell.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call