Abstract

Aqueous rechargeable zinc-based batteries hold great promise for energy storage applications, with most research utilizing zinc foils as the anode. Conversely, the high tunability of zinc powder (Zn-P) makes it an ideal choice for zinc-based batteries, seamlessly integrating with current battery production technologies. However, challenges such as contact loss, dendrite formation, and a high tendency for corrosion significantly hamper the performance enhancement of Zn-P anodes. This review provides an overview of strategies adopted from various perspectives, including zinc powder optimization, electrode engineering, and electrolyte modification, to address these issues. Additionally, it explores the limitations of existing research and offers valuable insights into potential future directions for further advancements in Zn-P anodes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.