Abstract

In this work, the synthesis and spectroscopic characterization of new zinc porphyrin-anthraquinone dyads is proposed. In particular, electron donor units based on zinc meso-tetraphenylporphyrin (ZnTPP) and zinc octaethylporphyrin (ZnOEP) have been coupled with differently substituted anthraquinones as acceptors. The quinone moiety was properly functionalized with imidazole, thus ensuring porphyrin complexation through zinc ion coordination. Accordingly, absorption and emission measurements demonstrated that the coordination occurred, and calculated binding constants were in the range 6.6 [Formula: see text] 10[Formula: see text]–3.9 [Formula: see text] 10[Formula: see text] M[Formula: see text]. Transient absorption spectroscopy for ZnTPP and ZnOEP dyads demonstrated that the electron transfer occurred, with the formation of the corresponding charge separated state, ZnTPP[Formula: see text]-AQ. Moreover, in ZnOEP complexes, a strong correlation between the chain length and flexibility with the charge separated state lifetime was observed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call