Abstract

Zinc, one of the most common nutraceutical agents, proved to be effective for diabetes as it regulates the blood glucose level by inhibiting glucagon secretion. However, the hepatotoxicity of zinc creates necrosis, hepatic glycogen depletion, and apoptosis of hepatocytes at the concentration of 10 μg/kg. Phthalocyanine, a blue-colored compound, is an aromatic macrocyclic compound with good antioxidant ability owing to its heterocyclic nitrogen conjugation. The conjugation of zinc with phthalocyanine aimed to reduce the toxicity associated with zinc and enhance the antidiabetic activity at a lower dose. Hence, the present research work possessed the insights of the synthetic aspect of zinc with phthalocyanine along with its entrapment in the poly(lactic-co-glycolic acid) (PLGA)-chitosan nanosystem via oral administration in the treatment of diabetes. A nanoprecipitation technique was implemented for the synthesis of PLGA chitosan nanoparticles, and formulation was further optimized using a central composite design. Twenty trials provided by the software selected optimum concentrations of PLGA, poly(vinyl alcohol) (PVA), and chitosan in consideration with particle size up to 335.6 nm, zeta potential 27.87 mV, and entrapment efficiency of 75.67 ± 8.13%. Addition of chitosan to the nanocarrier system for controlling the release of the drug for 3 days was accompanied by the improvement in the glucose level within 28 days. The delivery of the nanoparticles showed enhancement in the cholesterol, triglyceride, alkaline phosphatase (ALP), urine parameters, and pro-inflammatory cytokines. The application of DoE (design of experiments) for the optimization of the nanoparticles established a controlled release formulation for diabetes, which displayed safety and effectiveness in streptozotocin (STZ)-induced diabetic rats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call