Abstract
In the current study, zinc-phosphate nanoparticles (ZnPNPs) were investigated for the first time due to their anticancer activity against breast cancer Michigan Cancer Foundation-7 (MCF-7) cell line. The modification of such nanoparticles (NPs) was further examined for physicochemical characterization using various techniques such as powder X-ray diffraction (XRD), dynamic light scattering (DLS), zeta potential calculation, field emission scanning electron microscopy (FESEM), energy-dispersed spectroscopy (EDS), and Fourier transform infrared (FTIR) spectroscopy. Then, the newly fabricated ZnPNPs were tested for their in vitro cell cytotoxicity against breast cancer MCF-7 cells and noncancerous human embryonic kidney HEK293 cells, using MTT assay as a colorimetric one to assess cell metabolic activity for 24h. The apoptotic efficacy of the NPs was subsequently confirmed through data obtained from Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) staining kit and cell cycle analysis. Determination of reactive oxygen species (ROS) generation was further performed via flow cytometry. Additionally, the expression of tumor suppressor genes p53 was analyzed using real-time polymerase chain reaction (PCR). Also, the prepared NPs showed a mean particle size of 38nm. The measurements correspondingly showed that the cytotoxicity of MCF-7 cells depends on the concentration of NPs (IC50 = 80.112μg/mL). MCF-7 cells were associated with initiation of apoptotic pathway in cells. Additionally, flow cytometry revealed cell cycle arrest in sub-G1 phase. ROS production was also obtained after treatment with IC50 concentration. According to annexin V-FITC/PI staining kit data, the percentage of early and late apoptotic cells was 78.2% in those treated with ZnPNPs. Moreover, the real-time PCR results demonstrated the ability of NPs in upregulating p53 gene expression. In summary, the data demonstrated that fabricated ZnPNPs had prominence to act as antitumor agents in breast cancer therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.