Abstract

ZnO/reduced graphite oxide composites were synthesized using a two-step method in which KOH reacts with Zn(NO3)2 in the aqueous dispersions of graphite oxide (GO) to form a Zn(OH)2/graphite oxide precursor, followed by thermal treatment in air. It was found that the dispersion of reduced graphene oxide (rGO) sheets within composites was key for achieving an excellent capacitive performance of the samples. However, the mass ratio of ZnO to rGO determined whether rGO sheets within composites were dispersed or agglomerated. The composite achieved homogeneous incorporation of rGO sheets within the ZnO matrix when the mass ratio of ZnO to rGO was equal to 93.3:6.7. This composite, in which the weight percent of rGO was only 6.7%, appeared in the SEM images to be almost entirely filled with rGO sheets coated by ZnO and exhibited high specific capacitance and excellent cycling ability. Furthermore, the sheets overlapped to form a three-dimensional network structure, through which electrolyte ions easily access t...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call