Abstract

Bilayer heterojunction of aluminium doped zinc oxide (AZO) and titanium dioxide (TiO2) mesoporous has been successfully deposited on fluorine tin oxide (FTO) substrate as working electrode in dye sensitized solar cell. This layer was used as working electrode in quasi solid dye sensitized solar cell. The solar cell structure is FTO/ZnO/TiO2/PGE/Pt/FTO using polymer gel electrolyte (PGE). In polymer gel electrolyte system, hybrid copolymer based on poly-TMSPMA (3-methoxysilyl propyl methacrylate) was used as a matrix to trap ionic liquid. An addition of aluminum as atom dopant also studied to observe the physical properties changes of photoanode related to solar cell performance. AlCl3 was used as dopant material with the concentrations at 0.5 weight % and 1.0 weight% of zinc acetate dehydrate as raw material. Based on our previous result, the existence of Al dopant would decrease the surface roughness of ZnO layer, reduce the grain size of ZnO particles, transmittance at visible light increase and also change the charge carrier density. Nevertheless, the highest efficiency was achieved for undoped ZnO/TiO2 photoanode (η=0.67%). Based on current-voltage measurement data analysis (using diode model equation) the ideality factor (n) of device using undoped ZnO was smaller (n=2.96) than AZO 0.5 wt% and 1.0 wt% (n=∼4), indicate better quality of undoped ZnO/TiO2 interfaces rather than AZO/TiO2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.