Abstract

Polymer capacitive pressure sensors based on a dielectric composite layer of zinc oxide nanowire and poly(methyl methacrylate) show pressure sensitivity in the range of 2.63 × 10(-3) to 9.95 × 10(-3) cm(2) gf(-1). This represents an increase of capacitance change by as much as a factor of 23 over pristine polymer devices. An ultralight load of only 10 mg (corresponding to an applied pressure of ∼0.01 gf cm(-2)) can be clearly recognized, demonstrating remarkable characteristics of these nanowire-polymer capacitive pressure sensors. In addition, optical transmittance of the dielectric composite layer is approximately 90% in the visible wavelength region. Their low processing temperature, transparency, and flexible dielectric film makes them a highly promising means for flexible touching and pressure-sensing applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.