Abstract

Zinc oxide nanoparticles (nZn) have emerged as vital agents in combating arsenic (As) stress in plants. However, their role in mitigation of As induced oxidative stress is less studied. Therefore, this study aimed to assess the comparative role of nZn and ZnO in alleviating As toxicity in rice genotype “9311”. The results of this study revealed that nZn demonstrated superior efficacy compared to ZnO in mitigating As toxicity. This superiority can be attributed to the unique size and structure of nZn, which enhances its ability to alleviate As toxicity. Exposure to As at a concentration of 25 μM L-1 led to significant reductions in shoot length, root length, shoot dry weight, and root dry weight by 39%, 51%, 30%, and 46%, respectively, while the accumulation of essential nutrients such as magnesium (Mg), potassium (K), iron (Fe), manganese (Mn), and zinc (Zn) decreased by 25%–47% compared to the control plants. Additionally, As exposure resulted in stomatal closure and structural damage to vital cellular components such as grana thylakoids (GT), starch granules (SG), and the nucleolus. However, the application of nZn at a concentration of 30 mg L−1 exhibited significant alleviation of As toxicity, resulting in a reduction of As accumulation by 54% in shoots and 62% in roots of rice seedlings. Furthermore, nZn demonstrated the ability to scavenge reactive oxygen species (ROS) like hydrogen peroxide (H2O2) and superoxide anion (O2.-), while significantly promoted the gas exchange parameters, chlorophyll content (SPAD value), fluorescence efficiency (Fv/m) and antioxidant enzyme activities under As-induced stress. These findings highlight the potential of nZn in mitigating the adverse impacts of As contamination in rice plants. However, further research is necessary to fully comprehend the underlying mechanisms responsible for the protective effects of nZn and to determine the optimal conditions for their application in real-world agricultural settings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call