Abstract
Although zinc oxide nanoparticles (ZnONPs) are widely used, they have raised concerns of toxicity in humans. Previous studies have indicated that reactive oxygen species (ROS) and autophagy are involved in the cytotoxicity of ZnONPs, but the regulatory mechanisms between autophagy and ROS remain to be elucidated. Herein, we comprehensively investigated the regulatory mechanism of autophagy and the link between autophagy and ROS in ZnONPs-treated lung epithelial cells. We demonstrated that ZnONPs could induce autophagy, and this process could enhance the dissolution of ZnONPs in lysosomes to release zinc ions. Sequentially, zinc ions released from ZnONPs were able to damage not only lysosomes, leading to impaired autophagic flux, but also mitochondria. Impaired autophagic flux resulted in the accumulation of damaged mitochondria, which could generate excessive ROS to cause cell death. We further demonstrated that the inhibition of autophagy by either pharmacological inhibitors or small interfering RNA (siRNA)-mediated knockdown of Beclin-1 and AMP-activated protein kinase could ameliorate ZnONPs-induced cell death. Moreover, we found that lysosomal-associated membrane protein 1/2 (LAMP-1/2), which were the most abundant highly glycosylated protein in late endosomes/lysosomes, exhibited aberrant expression pattern upon treatment with ZnONPs. Intriguingly, LAMP-2 knockdown, but not LAMP-1 knockdown, could exacerbate the ROS generation and cell death induced by ZnONPs treatment. Meanwhile, LAMP-2 overexpression alleviated ZnONPs-induced cell death, suggesting that LAMP-2 was linked to this toxic phenotype induced by ZnONPs. Our results indicate that autophagic dysfunction could contribute to excessive ROS generation upon treatment with ZnONPs in lung epithelial cells, suggesting that modulating the autophagy process would minimize ZnONPs-associated toxicity.
Highlights
Nanotechnology has made remarkable progress in recent years, and the global nanotechnology market is estimated to reach a trillion dollars annually by 2015.1 Zinc oxide nanoparticles (ZnONPs) are one of the most important metal oxide nanoparticles and its worldwide production is estimated to be up to 1 million tons per year.[2]
The characteristics of ZnONPs used in this study were examined by transmission electron microscopy (TEM) (Supplementary Figure S1a), and the results showed that the particle size of ZnONPs was ~ 50 nm and the morphology was roughly spherical
Our results indicated that ZnONPs subtly harness the two important functions of autophagy in lung epithelial cells: foreign material engulfment and damaged organelles elimination
Summary
Nanotechnology has made remarkable progress in recent years, and the global nanotechnology market is estimated to reach a trillion dollars annually by 2015.1 Zinc oxide nanoparticles (ZnONPs) are one of the most important metal oxide nanoparticles and its worldwide production is estimated to be up to 1 million tons per year.[2]. ROS and inflammation caused by ZnONPs are most commonly accepted.[8,10,11,12] Another well-known toxicity-related mechanism is the release of zinc ions from ZnONPs, which can induce organelle damage in the biological environment.[13,14,15] the opinions about whether apoptotic cell death is induced by ZnONPs treatment are controversial. This disparity might be due to the differences in ZnONPs characteristics, doses or cells.[16,17,18,19,20]. Lysosomal dysfunction can lead to incomplete autophagy.[25]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.