Abstract

Zinc is an essential element affecting immune responses in aquatic organisms. In the present research, the immunomodulating effect of zinc oxide nanoparticles (ZnO NPs) was studied in Nile tilapia (Oreochromis niloticus). The minimum inhibitory concentration of zinc oxide nanoparticles (ZnO NPs) for Aeromonas hydrophila was estimated at 60µg/mL. To evaluate the efficacy of ZnO NPs for improving disease resistance against A. hydrophila, three hundred fish were divided into 5 groups. Fish in the group T1 maintained on the control feed, T2 and T3 feed on ZnO at 60 and 30µg/g, while T4 and T5 received ZnO NPs at 60 and 30µg/g, respectively for 8weeks. Immune responses were evaluated by determining the phagocytic activity, serum antibacterial activity, lysozymes, respiratory burst activity, and also gene expression of immunoglobin M-2, tumor necrosis factor-α, interleukin (IL)-1β, heat shock proteins, IL-10, insulin growth factor 1, transforming growth factor-β2, superoxide dismutase enzyme, and catalase enzyme genes. Results indicated that groups that received ZnO NPs have exaggerated immune response and upregulation in the most of expressed immune-related genes. After the feeding trial, all groups were experimentally infected with A. hydrophila, and the mortality rate was monitored. Among all the treated groups, a higher survival rate and disease resistance were observed for fish that received ZnO NPs at 30 and 60µg/g. The inclusion of ZnO NPs in O. niloticus feed improves both fish immune response and disease resistance against A. hydrophila.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.