Abstract

To improve the dimensional accuracy of 3D printed parts produced by vat photopolymerization, a controlled light penetration through the photopolymer resin is necessary to avoid excessive unwanted curing caused by overexposure. Although photoabsorbing additives like Sudan I can attenuate light to decrease excessive light penetration, they also require longer exposure time to solidify the resin. In this work, photocatalytic zinc oxide nanoparticles (ZnONP) were used as resin additives substituting photoabsorbers to control overexposure that causes loss in dimensional accuracy. Compared to adding 0.1 wt/wt% of Sudan I, adding 2.5 wt/wt% of ZnONP not only showed similar level of control in light penetration, but reduced the required curing time of the resin. Significant improvement in preventing unwanted curing was also observed in resin with ZnONP, as evident by our printing tests on open channels and overhanging structures. Unlike Sudan I which deteriorated the mechanical properties of printed parts, ZnONP additives have rendered more effective curing that resulted in improved tensile strength, fracture strain and Young’s modulus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.