Abstract

Dye waste is one of the most serious types of pollution in natural water bodies, since its presence can be easily detected by the naked eye, and it is not easily biodegradable. In this study, zinc oxide nanoparticles (ZnO-NPs) were generated using a chemical reduction approach involving the zinc nitrate procedure. Fourier transform infrared (FTIR), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET), and UV-vis techniques were used to analyse the surface of ZnO-NPs. The results indicate the creation of ZnO-NPs with a surface area of 95.83 m2 g−1 and a pore volume of 0.058 cm3 g−1, as well as an average pore size of 1.22 nm. In addition, the ZnO-NPs were used as an adsorbent for the removal of Ismate violet 2R (IV2R) dye from aqueous solutions under various conditions (dye concentration, pH, contact time, temperature, and adsorbent dosage) using a batch adsorption technique. Furthermore, FTIR and SEM examinations performed before and after the adsorption process indicated that the surface functionalisation and shape of the ZnO-NP nanocomposites changed significantly. A batch adsorption analysis was used to examine the extent to which operating parameters, the equilibrium isotherm, adsorption kinetics, and thermodynamics affected the results. The results of the batch technique revealed that the best results were obtained in the treatment with 0.04 g of ZnO-NP nanoparticles at 30 °C and pH 2 with an initial dye concentration of 10 mg L−1, which removed 91.5% and 65.6% of dye from synthetic and textile industry effluents, respectively. Additionally, six adsorption isotherm models were investigated by mathematical modelling and were validated for the adsorption process, and error function equations were applied to the isotherm model results in order to find the best-fit isotherm model. Likewise, the pseudo-second-order kinetic model fit well. A thermodynamic study revealed that IV2R adsorption on ZnO-NPs is a spontaneous, endothermic, and feasible sorption process. Finally, the synthesised nanocomposites prove to be excellent candidates for IV2R removal from water and real wastewater systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call