Abstract

PurposeZinc oxide (ZnO) is an emerging optoelectronic material due to its various functional behaviors. The purpose of this paper is to report on the fabrication and characterizations of ZnO microrods.Design/methodology/approachZnO microrods were synthesized using sol‐gel immerse technique on oxidized silicon (Si) substrates. The oxidized Si substrates were immersed in ZnO aqueous solution for different times ranging from three to five hours. The surface morphologies of the ZnO microrods were examined using scanning electron microscope (SEM). In order to investigate the structural properties, the ZnO microrods were measured using an X‐ray diffractometer (XRD). The optical properties were measured using a photoluminescence (PL) spectrophotometer.FindingsCharacterization from SEM shows an enhanced growth of the ZnO rods with increasing immerse time. XRD characterizations demonstrate sharp and narrow diffraction peaks peculiar to ZnO, which implies that the rod is of high crystallinity. Based on the PL spectra, long immerse time results in the high peak in the UV region.Originality/valueThis paper concludes that the immerse time exerts an influence on the ZnO microrods. A longer immerse duration is preferred in the fabrication of the ZnO microrod, which is considered an emerging material for many advanced electronic and optoelectronic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.