Abstract
1. Inhibition of collagenase from rabbit bone cultures by the chelating agents 1,10-phenanthroline and EDTA is almost completely reversed by Zn2+; other metal cations are less effective in reversing the inhibition. Optimal restoration of activity is achieved at Zn2+ concentrations below that of the chelator, but excess of Zn2+ is inhibitory. 2. Prolonged incubation of collagenase with either chelator causes irreversible inactivation. This inactivation is prevented by Zn2+ at the same concentrations needed to reverse the primary inhibition. 3. Collagenase incorporates 65Zn by exchange when incubated with 1,10-phenanthroline and Zn2+ containing this radioactive isotope. The 65Zn2+ can be removed from its binding site in collagenase by 1,10-phenanthroline or EDTA. Irreversible inactivation of collagenase by chelators destroys its ability to incorporate 65Zn2+. 4. Latent collagenase, the inhibited form in which collagenase first appears in culture, behaves similarly to the active enzyme in 65Zn2+-exchange experiments, but is resistant to irreversible inactivation by chelators. 5. It is concluded that collagenase is a zinc metalloenzyme that forms an inactive and unstable apoenzyme on treatment with chelators. The bound inhibitor component of latent collagenase evidently stabilizes the apoenzyme.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.