Abstract

Hsp31 protein, belonging to the DJ-1/ThiJ/PfpI superfamily, increases the survival of Escherichia coli under various stresses. While it was reported as a holding chaperone, Hsp31 was also shown to exhibit the glyoxalase III activity in subsequent study. Here, we describe our finding that Hsp31 undergoes a Zn+2-mediated multimerization (HMWZinc), resulting in an enhanced chaperone activity. Furthermore, it was shown that the formation of HMWZinc is reversible such that the oligomer dissociates into the native dimer by EDTA incubation. We attempted to determine the structural change involving the transition between the native dimer and HMWZinc by adding Ni+2, which is Zn+2-mimetic, producing a potential intermediate structure. An analysis of this intermediate revealed a structure with hydrophobic interior exposed, due to an unfolding of the N-terminal loop and the C-terminal β-to-α region. A treatment with hydrogen peroxide accelerated HMWZinc formation, so that the Hsp31C185E mutant rendered the formation of HMWZinc even at 45 °C. However, the presence of Zn+2 in the catalytic site antagonizes the oxidation of C185, implying a negative role. Our results suggest an unprecedented mechanism of the enhancing chaperone activity by Hsp31, in which the reversible formation of HMWZinc occurs in the presence of heat and Zn+2 ion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.