Abstract

The present study evaluated the inhibitory effects of zinc on colonic antioxidant defense system and histoarchitecture during 1,2 dimethylhydrazine (DMH) induced colon carcinogenesis in male Spraque Dawley rats. The rats were segregated into four groups viz., normal control, DMH treated, zinc treated, DMH + zinc treated. Colon carcinogenesis was induced through weekly subcutaneous injections of DMH (30 mg/kg body weight) for 8 weeks. Zinc (in the form of zinc sulphate) was supplemented to rats at a dose level of 227 mg/l in drinking water, ad libitum for the entire duration of the study. Increased lipid peroxidation was accompanied by a decrease in reduced glutathione (GSH), glutathione reductase (GR), glutathione-s-transferase (GST), superoxide dismutase (SOD), and catalase. Administration of zinc to DMH treated rats significantly decreased the lipid peroxidation levels with simultaneous enhancement of GSH, GR, GST, SOD, and Catalase. Histopathological studies from DMH treated rats revealed disorganization of colonic histoarchitecture. However, zinc treatment to DMH treated rats greatly restored normalcy in the colonic histoarchitecture, with no apparent signs of abnormality. Energy Dispersive X-Ray Fluorescence (EDXRF) studies revealed a significant decrease in tissue concentrations of zinc in the colon following DMH treatment, which upon zinc supplementation were recovered to near normal levels. In conclusion, the results of this study suggest that zinc has a beneficial effect during the initiation of key events leading to the development of experimentally induced carcinogenesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call