Abstract

Zinc is an essential trace metal that has integral roles in numerous biological processes, including enzymatic function, protein structure, and cell signaling pathways. Both excess and deficiency of zinc can lead to detrimental effects on development and metabolism, resulting in abnormalities and disease. We altered the zinc balance within Caenorhabditis elegans to examine how changes in zinc burden affect longevity and healthspan in an invertebrate animal model. We found that increasing zinc levels in vivo with excess dietary zinc supplementation decreased the mean and maximum lifespan, whereas reducing zinc levels in vivo with a zinc-selective chelator increased the mean and maximum lifespan in C. elegans. We determined that the lifespan shortening effects of excess zinc required expression of DAF-16, HSF-1 and SKN-1 proteins, whereas the lifespan lengthening effects of the reduced zinc may be partially dependent upon this set of proteins. Furthermore, reducing zinc levels led to greater nuclear localization of DAF-16 and enhanced dauer formation compared to controls, suggesting that the lifespan effects of zinc are mediated in part by the insulin/IGF-1 pathway. Additionally, zinc status correlated with several markers of healthspan in worms, including proteostasis, locomotion and thermotolerance, with reduced zinc levels always associated with improvements in function. Taken together, these data support a role for zinc in regulating both development and lifespan in C. elegans, and that suggest that regulation of zinc homeostasis in the worm may be an example of antagonistic pleiotropy.

Highlights

  • Zinc is an essential micronutrient involved in the structure, regulation, and activity for thousands of proteins, and participates in many biological processes such as redox regulation and signal transduction [1,2,3,4,5,6]

  • To characterize the effects of zinc on lifespan, wildtype C. elegans populations were cultured on noble agar minimal media (NAMM) containing ZnSO4 added to the E. coli OP50 bacteria

  • Zinc Levels Regulate Lifespan in C. elegans first tested for toxicity of the supplemental zinc by monitoring growth and body size development of the worms

Read more

Summary

Introduction

Zinc is an essential micronutrient involved in the structure, regulation, and activity for thousands of proteins, and participates in many biological processes such as redox regulation and signal transduction [1,2,3,4,5,6]. Zinc-dependent functions are widespread within the multicellular organism but especially in the central nervous system, immune system, skeletal and reproductive. Zinc Levels Regulate Lifespan in C. elegans

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call