Abstract

Sperm capacitation is a post-testicular maturation step endowing spermatozoa with fertilizing capacity within the female reproductive tract, significant for fertility, reproductive health, and contraception. Recently discovered mammalian sperm zinc signatures and their changes during sperm in vitro capacitation (IVC) warranted a more in-depth study of zinc interacting proteins (further zincoproteins). Here, we identified 1752 zincoproteins, with 102 changing significantly in abundance (P < 0.05) after IVC. These are distributed across 8 molecular functions, 16 biological processes, and 22 protein classes representing 130 pathways. Two key, paradigm-shifting observations were made: i) during sperm capacitation, molecular functions of zincoproteins are both upregulated and downregulated within several molecular function categories; and ii) Huntington’s and Parkinson’s disease pathways were the two most represented, making spermatozoon a candidate model for studying neurodegenerative diseases. These findings highlight the importance of Zn2+ homeostasis in reproduction, offering new avenues in semen processing for human-assisted reproductive therapy, identification of somatic-reproductive comorbidities, and livestock breeding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.