Abstract

In current research, electrochemical energy storage systems have gaining interest because they constitute an essential element in the development of sustainable energy technologies [1,2]. Among them, rechargeable flow batteries (RFBs) are one of the most promising technologies for the integration in grid-connected electricity, especially if combined with unpredictable and intermittent renewable energy sources, due to their high efficiency, power/energy independent sizing and room temperature operation [3]. At the moment, among all RFBs systems, the most investigated and advanced technology is the vanadium based RFB, characterized by an energy efficiency equal to 80% and energy density ranging 15-45 Wh/l [4]. However, nowadays the main bulk of research is focused on finding an economically convenient and technically competitive flow battery chemistry, able to ensure long lifetime and high energy efficiency [5,6]. In this study, a zinc-iron RFBs based on sulfate and sulfamate electrolytes will be presented, discussing the achievement of a charge density in the range 30-70 Wh/l. The combination of high energy efficiency of the Zn-Fe RFB with its ability to withstand a large number of charge/discharge cycles and the low cost, makes this battery system suitable for energy storage applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call