Abstract

Zinc and its alloys are the best candidates for biodegradable cardiovascular stents due to their good corrosion rate and biocompatibility in vasculature. However, the cytotoxicity caused by the rapid release of zinc ions during the initial degradation stage and the lack of an anticoagulant function are huge challenges for their practical clinical applications. In this work, we developed a zinc ion-crosslinked polycarbonate/heparin composite coating via electrophoretic deposition (EPD) to improve the biocompatibility and provide anticoagulant functions for Zn-alloy stents. Both electrochemical tests and in vitro immersion tests demonstrated an enhanced corrosion resistance and lower Zn ion release rate of the coated Zn alloys. Enhanced adhesion and proliferation of endothelial cells on coated Zn alloys were also observed, indicating faster reendothelialization than that on bare Zn alloys. Moreover, the surface erosion of the composite coating led to the uniform and long-term release of heparin, which remarkably inhibited the adhesion and activation of platelets, and may have endowed the coated Zn-alloy stents with long-term anticoagulant functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.