Abstract

Here we report novel zinc ion conducting polymer electrolytes based on oligomeric polyether/PVDF-HFP blends with or without the incorporation of a small amount of organic carbonates. Their thermal properties, ionic conductivity and electrochemical properties are characterized and the effect of different Zn salts and incorporation of a small amount of organic carbonates are investigated. These polymer electrolyte membranes exhibit essentially no or very low volatility, high thermal stability, high ionic conductivity, wide electrochemical stability window, acceptable interfacial resistance with zinc, and the capability for reversible Zn plating/stripping. Particularly promising are electrolyte systems based on the combination of low lattice energy zinc imide salt and a special co-solvent of oligomeric poly(ethylene glycol) dimethyl ether (PEGDME) mixed with a small amount of ethylene carbonate (EC), dimensionally stabilized with PVDF-HFP. Such novel polymer electrolyte membranes could lead to the development of new kinds of electrochemical energy storage devices based on zinc electrochemistry, including solid-state, thin-film rechargeable zinc/air cells envisaged.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.