Abstract

To investigate the effects of zinc (Zn(2+)) concentrations on cultured benign prostatic hyperplasia (BPH) smooth muscle cell (SMC) proliferation. The effects of Zn(2+) were studied in primary cultures of human BPH SMC, stimulated with either 10-μM lysophosphatidic acid (LPA) or LPA in combination with 100-nM testosterone. Deoxyribonucleic acid replication and protein synthesis using [(3)H]-thymidine and [(35)S]-methionine incorporation were measured. Furthermore, studies were performed to evaluate if Zn(2+) could potentiate the inhibitory effect of phosphodiesterase-5 blockers, on BPH SMC proliferation. Zn(2+) generated a bell-shaped concentration response, both regarding deoxyribonucleic acid replication and protein synthesis in cultured BPH SMC. Below a threshold value (approximately 200μM), a significant mitogenic effect was seen, whereas higher concentrations inhibited SMC proliferation after stimulation with LPA. This effect was even more pronounced after stimulation of LPA in combination with testosterone. Moreover, phosphodiesterase-5 inhibitors, that is, sildenafil blocked LPA-stimulated BPH SMC proliferation. This antiproliferative effect, was significantly potentiated by coincubation with Zn(2+) in an additative manner. The bell-shaped concentration response of Zn(2+) on cultured BPH SMC proliferation suggests that changes in prostate Zn(2+) concentrations, during aging, diet, or inflammatory conditions, may be of importance in the pathogenesis of BPH.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.