Abstract

BackgroundTIM15/Zim17 in yeast and its mammalian ortholog Hep are Zn2+ finger (Cys4) proteins that assist mtHsp70 in protein import into the mitochondrial matrix. MethodsHere we characterized the Zn2+ induced TIM15 folding integrating biophysical and computational approaches. ResultsTIM15 folding occurs from an essentially unstructured conformation to a Zn2+-coordinated protein in a fast and markedly temperature-dependent process. Moreover, we demonstrate unambiguously that Zn2+ induced TIM15 folding is essential for its role as mtHsp70 chaperone since in the unstructured apo state TIM15 does not bind to mtHsp70 and is unable to prevent its aggregation. Molecular dynamics simulations help to understand the crucial role of Zn2+ in promoting a stable and functional 3D architecture in TIM15. It is shown that the metal ion, through its coordinating cysteine residues, can mediate relevant long-range effects with the interaction interface for mtHsp70 coupling thus folding and function. ConclusionsZn2+ induced TIM15 folding is essential for its function and likely occurs in mitochondrial matrix where high concentrations of Zn2+ were reported. General significanceThe combination of experimental and computational approaches presented here provide an integrated structural, kinetic and thermodynamic view of the folding of a mitochondrial zinc finger protein, which might be relevant to understand the organelle import of proteins sharing this fold.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.