Abstract

Isotopic labeling and density functional theory (DFT) were used to determine the mechanism for acetylene hydrogenation and oligomerization on well-defined intermetallic nickel–zinc catalysts. The primary benefit of adding zinc to nickel is a reduction in oligomeric species formation which leads to higher ethylene selectivity. The production of ethane is not highly dependent on zinc content; therefore, ethane production is not a good descriptor of ethylene selectivity since acetylene may also be converted to higher molecular weight products. Analysis using DFT and Langmuir–Hinshelwood kinetics shows that the large decrease in the adsorption energy of acetylene on intermetallic NiZn compared to pure Ni is responsible for the observed increase in ethylene selectivity. The adsorption energy of acetylene appears to be a descriptor for carbon–carbon bond formation since a high adsorption energy leads to an increased coverage of C2 species and an increased rate of carbon–carbon bond formation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.