Abstract
Treatment of MCF-7 cells with tamoxifen induced vacuole formation and cell death. Levels of the autophagy marker, microtubule-associated protein light chain 3 (LC3)-II also increased, and GFP-LC3 accumulated in and around vacuoles in MCF-7 cells exposed to tamoxifen, indicating that autophagy is involved in tamoxifen-induced changes. Live-cell confocal microscopy with FluoZin-3 staining and transmission electron microscopy with autometallographic staining revealed that labile zinc(II) ion (Zn(2+)) accumulated in most acidic LC3(+) autophagic vacuoles (AVs). Chelation of Zn(2+) with N,N,N',N'-tetrakis (2-pyridylmethyl) ethylenediamine (TPEN) blocked the increase in phospho-Erk and LC3-II levels, and attenuated AV formation and cell death. Conversely, the addition of ZnCl(2) markedly potentiated tamoxifen-induced extracellular signal-regulated kinase (Erk) activation, autophagy and cell death, indicating that Zn(2+) has an important role in these events. Tamoxifen-induced death was accompanied by increased oxidative stress and lysosomal membrane permeabilization (LMP) represented as release of lysosomal cathepsins into cytosol. Treatment with the antioxidant N-acetyl-L-cysteine (NAC) blunted the increase in Zn(2+) levels and reduced LC3-II conversion, cathepsin D release and cell death induced by tamoxifen. And cathepsin inhibitors attenuated cell death, indicating that LMP contributes to tamoxifen-induced cell death. Moreover, TPEN blocked tamoxifen-induced cathepsin D release and increase in oxidative stress. The present results indicate that Zn(2+) contributes to tamoxifen-induced autophagic cell death via increase in oxidative stress and induction of LMP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.