Abstract

Potassium ion batteries are promisingly proposed for the large cale energy storage. However, potassium with large ion radius causes severe volumetric expansion of anodes during charging, which deteriorates the rate and the cycling performances of batteries. Herein, a honeycomb-like graphene monolith with rich micropores is prepared. The monolith is further applied as the binder-free anode for potassium ion batteries. It shows the remarkable rate performance with a capacity of 180 mAh g−1 at a current density of 10 A g−1, and it can stably run for 4000 cycles at 1 A g−1. Kinetic studies and theoretical analyses reveal that the large graphitic interlayer spacing, the nitrogen doping, and the 3D network structure can significantly promote the diffusion rate, the absorption of potassium ions, as well as the transports of electrons and ions. The graphene-based potassium ion batteries can thus boost the development of renewable energies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.