Abstract

Zinc finger protein transcription factor ZFP5 positively regulates root hair elongation in response to Pi and potassium deficiency by mainly activating the expression of EIN2 in Arabidopsis. Phosphate (Pi) and potassium (K+) are major plant nutrients required for plant growth and development, and plants respond to low-nutrient conditions via metabolic and morphology changes. The C2H2 transcription factor ZFP5 is a key regulator of trichome and root hair development in Arabidopsis. However, its role in regulating root hair development under nutrient deprivations remains unknown. Here, we show that Pi and potassium deficiency could not restore the short root hair phenotype of zfp5 mutant and ZFP5 RNAi lines to wild type level. The deprivation of either of these nutrients also induced the expression of ZFP5 and the activity of an ethylene reporter, pEBS:GUS. The significant reduction of root hair length in ein2-1 and ein3-1 as compared to wild-type under Pi and potassium deficiency supports the involvement of ethylene in root hair elongation. Furthermore, the application of 1-aminocyclopropane-1-carboxylic acid (ACC) significantly enhanced the expression level of ZFP5 while the application of 2-aminoethoxyvinyl glycine (AVG) had the opposite effect when either Pi or potassium was deprived. Further experiments reveal that ZFP5 mainly regulates transcription of ETHYLENE INSENSITIVE 2 (EIN2) to control deficiency-mediated root hair development through ethylene signaling. Generally, these results suggest that ZFP5 regulates root hair elongation by interacting with ethylene signaling mainly through regulates the expression of EIN2 in response to Pi and potassium deficiency in Arabidopsis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.