Abstract

The rice (Oryza sativa) genome harbours three genes encoding CysCysHisCys (CCHC)-type zinc finger-containing glycine-rich RNA-binding proteins, designated OsRZ proteins, but their importance and physiological functions remain largely unknown. Here, the stress-responsive expression patterns of OsRZs were assessed, and the biological and cellular functions of OsRZs were evaluated under low temperature conditions. The expression levels of the three OsRZs were up-regulated by cold stress, whereas drought or high salt stress did not significantly alter its transcript level. OsRZ2 complemented the cold sensitivity of BX04 Escherichia coli cells under low temperatures, and had DNA-melting activity and transcription anti-termination activity, thereby indicating that OsRZ2 possesses an RNA chaperone activity. By contrast, neither OsRZ1 nor OsRZ3 harboured these activities. Ectopic expression of OsRZ2, but not OsRZ3, in cold-sensitive Arabidopsis grp7 knockout plants rescued the grp7 plants from cold and freezing damage, and OsRZ2 complemented the defect in mRNA export from the nucleus to the cytoplasm in grp7 mutant during cold stress. The present findings support the emerging idea that the regulation of mRNA export is one of the adaptive processes in plants under stress conditions, and RNA chaperone functions as a regulator in mRNA export under cold stress conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.