Abstract

The large majority of core photosynthesis proteins in plants are encoded by nuclear genes, but a small portion have been retained in the plastid genome. These plastid-encoded chloroplast proteins fulfill essential roles in the process of photochemistry. Here, we report the use of nuclear-encoded, chloroplast-targeted zinc finger artificial transcription factors (ZF-ATFs) with effector domains of prokaryotic origin to modulate the expression of chloroplast genes, and to enhance the photochemical activity and growth characteristics of Arabidopsis thaliana plants. This technique was named chloroplast genome interrogation. Using this novel approach, we obtained evidence that ZF-ATFs can indeed be translocated to chloroplasts of Arabidopsis plants, can modulate their growth and operating light use efficiency of PSII, and finally can induce statistically significant changes in the expression levels of several chloroplast genes. Our data suggest that the distortion of chloroplast gene expression might be a feasible approach to manipulate the efficiency of photosynthesis in plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.