Abstract
Determination of zinc concentrations in white blood cells has been used to establish zinc deficiency. During pathological conditions changes in zinc concentrations in these blood cells were observed. However, these investigations were hampered by the low amount of zinc in this form per mL blood. Earlier we demonstrated that, in the case of zinc deficiency, the uptake of zinc was increased, using the in vitro exchange of zinc by the various blood cells with extracellular zinc labeled with 65Zn in fairly physiologic conditions. In case of inflammation, no increase in zinc uptake by erythrocytes was seen, indicating that this method probably can be used to differentiate real from apparent zinc deficiency. Only during the first days of the inflammatory process, probably representing the redistribution phase during which zinc moves from the serum to the liver, a small increase in in vitro zinc uptake was seen in mononuclear cells (MNC) and polymorphonuclear cells (PMNC). Earlier papers raised some questions; e.g., is the uptake part of an exchange process and can the efflux of zinc by the cells be measured by the same method; what is the influence of time on the process of zinc uptake; what is the magnitude of the uptake of zinc by the cells compared to the zinc concentration in the cells; and, what is the influence of temperature on the uptake of zinc? In the present study, the influence of incubation time and temperature on the uptake of zinc by human and rat blood cells and on the release of zinc by rat blood cells was studied. At least three phases of uptake of zinc in the various cells were found by varying the incubation time--a fast phase during the first half hour, probably caused by an aspecific binding of zinc on or in the cell membrane; a second fast uptake between 60-330 min, probably caused by an influx of zinc in the cell as part of the exchange process of zinc; and a slow third phase after 5.5 h, in which probably the in- and efflux of the rapidly exchangeable intracellular pool is more or less equilibrated. For mononuclear cells, polymorphonuclear cells, and erythrocytes of rats, the rapidly exchangeable intracellular pool is 40%, 53%, and 10%, respectively, of the total zinc content of the cells. This study is also performed in human cells; in human cells the exchangeable pool of mononuclear cells and erythrocytes is 17 and 3.5% of the total zinc content of the cells, respectively.(ABSTRACT TRUNCATED AT 400 WORDS)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.