Abstract

Earlier work by our group and others has documented improvement of epithelial barrier function in human gastrointestinal models. Here we tested zinc's ability to improve a renal epithelial model. Our aim was to compare the functional and structural effects of zinc on the tight junctional (TJ) complexes of these two very distinct epithelial cell types. Zinc's ability to achieve barrier enhancement in very different epithelial cell types by action upon distinct molecular targets in each epithelial model may suggest a fundamental general role for supplemental zinc in epithelial barrier improvement throughout the body. Cell layers were exposed to 50 or 100 μM zinc on both cell surfaces for 48 h followed by measurement of transepithelial electrical resistance (Rt) and transepithelial (14)C-mannitol flux (Jm). TJ proteins in cell layers were analyzed by Western immunoblot. Zinc supplementation improved the basal TJ barrier function of LLC-PK1 renal cell layers, exemplified by increased Rt and decreased Jm. These zinc-induced changes were also accompanied by decreased NaCl dilution potentials. Of the tight junctional proteins that were tested (occludin, claudins 1, 2, 3, 4, and 5, and tricellulin), we did not observe a zinc-induced change in abundance of any of them, in detergent-soluble fractions of lysates of confluent differentiated cell layers. However, examination of cytosolic fractions showed concentration-dependent increases in the levels of claudins -2 and -4 in this compartment as a result of supplemental zinc. The effects of supplemental zinc on the tight junctional complexes and barrier properties of this renal epithelial model are contrasted with zinc effects on the CACO-2 gastrointestinal model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call