Abstract

Prismatic Nickel-Zinc (NiZn) batteries with energy densities higher than 100 Wh kg−1were prepared using Zn electrodes with different initial morphologies. The effect of initial morphology of zinc electrode on battery capacity was investigated. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) reveal that initial morphology of zinc electrode changes drastically after a few charge/discharge cycles regardless of initial ZnO powder used. ZnO electrodes prepared using ZnO powders synthesized from ZnCl2and Zn(NO3)2lead to average battery energy densities ranging between 92 Wh kg−1and 109 Wh kg−1while using conventional ZnO powder leads to a higher energy density, 118 Wh kg−1. Average discharge capacities of zinc electrodes vary between 270 and 345 mA g−1, much lower than reported values for nano ZnO powders in literature. Higher electrode surface area or higher electrode discharge capacity does not necessarily translate to higher battery energy density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.