Abstract

Focusing on the trace metal zinc as a potential biomarker for breast cancer, the literature describes bulk zinc concentrations in breast cancer tissue to be higher than in normal tissue. From a histopathological point of view, cancer cells are intermingled with normal cells of the stroma within breast cancer tissues; therefore, bulk analysis cannot reflect this situation adequately. To address this problem, analysis of zinc distribution in histological sections is the method of choice. In the present study, nine samples of invasive ductal and lobular breast carcinoma of histological grade 1-3 were investigated, clearly differentiating between cancer and stroma areas. Zinc concentrations were determined by laser ablation inductively coupled plasma mass spectrometry applying a calibration technique based on spiked polyacrylamide gels. Direct comparison between hematoxylin- and eosin-stained tissues and zinc contour plots revealed that zinc is enriched in cancer tissue containing tumor cells in contrast to normal stroma. Moreover, zinc concentration in carcinomatous tissues directly correlates with the histological malignancy grade. Differentiation between carcinomatous tissue and stroma by determination of zinc content and the correlation of zinc concentration with the histological malignancy grade not only provides a key feature for clinical decision making for cancer therapy but also suggests the trace metal zinc as a potential biomarker for breast cancer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.