Abstract

A chlorinated polyethylene rubber (CPE)/ethylene-vinyl acetate copolymer (EVA) (weight ratio = 70/30) thermoplastic vulcanizate (TPV) was prepared by dynamic vulcanization, with the TPV being reinforced by various amounts of zinc dimethacrylate (ZDMA). The effects of ZDMA content on the mechanical and morphological properties of the TPVs were investigated. Experimental results indicated that dynamically vulcanized CPE/EVA blends without ZDMA showed an elastomeric behavior when the CPE/EVA weight ratio ranged from 90/10 to 50/50. The mechanical properties of dynamically vulcanized CPE/EVA blends were enhanced remarkably by the incorporation of ZDMA, especially when the ZDMA content was 5 phr. The fracture surface morphology of the reinforced CPE/EVA TPVs was relatively rough and drawn fibers could be found clearly. There were many ZDMA particles dispersed on the etched surface of the reinforced CPE/EVA TPVs with diameters of below about 10 μm. Energy dispersive X-ray spectrometer (EDS) results showed that the ZDMA particles were coated with CPE, the ZDMA particles being surrounded by a large number of small crosslinked CPE particles with diameters of 1 μm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call