Abstract

A modelling framework has recently been developed which considers tribochemistry in deterministic contact mechanics simulations in boundary lubrication. One of the capabilities of the model is predicting the evolution of surface roughness with respect to the effect of tribochemistry. The surface roughness affects the behaviour of tribologically loaded contacts and is therefore of great importance for designers of machine elements in order to predict various surface damage modes (e.g. micropitting or scuffing) and to design more efficient tribosystems. The contact model considers plastic deformation of the surfaces and employs a modified localized version of Archard’s wear equation at the asperity scale that accounts for the thickness of the tribofilm. The evolution of surface topography was calculated based on the model for a rolling/sliding contact and the predictions were validated against experimental results. The experiments were carried out using a Micropitting Rig (MPR) and the topography measurements were conducted using White Light Interferometry. Numerically, it is shown that growth of the ZDDP tribofilm on the contacting asperities affects the topography evolution of the surfaces. Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS) have been employed to confirm experimentally the presence of the tribofilm and its chemistry. The effects of the contact load and surface hardnesses on the evolution of surface topography have also been examined in the present work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.