Abstract
The activity of zinc (Zn) ions in the soil solution bathing plant roots is controlled by the simultaneous equilibrium of several competing reactions, such as surface exchange, specific bonding, lattice penetration, precipitation reactions, and the processes leading to the desorption of surface and lattice-bound ions. Desorption of Zn in 15 calcareous soils from southern Iran, treated with 10 mg Zn kg−1 soil as zinc sulfate (ZnSO4·7H2O) and 100 mg phosphorus (P) kg−1 soil as calcium phosphate [Ca(H2PO4)2H2O] and then equilibrated and extracted with diethylentriaminepentaacetic acid (DTPA), was studied in this experiment. The results were fitted to zero-order, first-order, second-order, third-order, parabolic diffusion, two-constant rate, Elovich, and simple Elovich kinetic models. Two-constant rate, simple Elovich, and parabolic diffusion models were determined to best describe Zn-desorption kinetics. Zinc desorption increased as Zn was applied but decreased with applied P.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.