Abstract

Growth failure in zinc-deficient animals is associated with decreased DNA synthesis; zinc deprivation of 3T3 cells, by use of diethylenetrinitrilopentaacetate (DTPA), impairs thymidine incorporation when the cells are stimulated with fetal bovine serum (FBS). The purpose of this study was to determine the step of cell cycle progression that is affected by zinc deprivation. Swiss murine 3T3 cells were cultured for 3 d in complete media and then for 2 d in low serum media. Cells were then placed in serum-free media and stimulated in sequence with platelet-derived growth factor (PDGF; 3 h), epidermal growth factor (EGF; 0.5 h) and insulin-like growth factor-I (IGF-I; 16 h). The combination of growth factors stimulated thymidine incorporation to the same extent as 10% FBS, and DTPA or EDTA (0.6 mmol/L) inhibited thymidine incorporation. Inhibition was prevented by addition of zinc, but not calcium, iron or cadmium (0.4 mmol/L). When DTPA was present during all stages with no addition of zinc, or zinc added during the competency-priming (PDGF and EGF) step, the IGF-I step, or both steps, the zinc effect occurred at the IGF-I step. Zinc addition 4 h before the measurement of thymidine incorporation had no ameliorative effect, but the presence of zinc during the prior 12 h increased incorporation. Thus zinc exerts its major effect on DNA synthesis during the IGF-I stimulatory phase of the cell cycle. The total zinc concentration of 3T3 cells treated with DTPA for 16 h was not different from that of untreated cells; hence only a small compartment of the cell is affected by DTPA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call