Abstract

Waste heat is a major energy loss in manufacturing facilities. Thermally conductive polymer composite heat exchangers could be utilized in the ultralow temperature range (below 200° C) for waste heat recovery. Fused deposition modeling (FDM), also known as three-dimensional (3-D) printing, has become an increasingly popular technology and presents one approach to fabrication of these exchangers. The primary challenge to the use of FDM is the low-conductivity of the materials themselves. This paper presents a study of a new polymer-Zn composite designed for enhanced thermal conductivity for usage in FDM systems. Thermal properties were assessed in addition to basic printability. Filler volume percentages were varied to study the effects on material properties. Scanning electron microscope (SEM) images were taken of the 3-D printed test pieces to determine filler orientation and filler distribution. Lastly, experimentally obtained thermal conductivity values were compared to the theoretical thermal conductivity values predicted from the Lewis-Nielsen model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.