Abstract
With the rising incidences of cancer cases, the quest for new metal based anticancer drugs has led to extensive research in cancer biology. Zinc complexes of amino acid residue side chains are well recognized for hydrolysis of phosphodiester bond in DNA at faster rate. In the presented work, a Zn(II) complex of cyclen substituted with two l-tryptophan units, Zn(II)-Cyclen-(Trp)2 has been synthesized and evaluated for antiproliferative activity. Zn(II)-Cyclen-(Trp)2 was synthesized in ∼70% yield and its DNA binding potential was evaluated through QM/MM study which suggested good binding (G=−9.426) with B-DNA. The decrease in intensity of the positive and negative bands of CT-DNA at 278nm and 240nm, respectively demonstrated an effective unwinding of the DNA helix with loss of helicity. The complex was identified as an antiproliferative agent against U-87MG cells with 5 fold increase in apoptosis with respect to control (2h post incubation, IC50 25µM). Electrophoresis and comet assay studies exhibited an increase in DNA breakage after treatment with complex while caspase-3/β-actin cleavage established a caspase-3 dependent apoptosis pathway in U-87 MG cells after triggering DNA damage. In vivo tumor specificity of the developed ligand was validated after radiocomplexation with 99mTc (>98% radiochemical yield and specific activity of 2.56GBq/µmol). Avid tumor/muscle ratio of >6 was depicted in biodistribution and SPECT imaging studies in U-87 MG xenograft model nude mice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.