Abstract
This study used metagenomic sequencing to examine the effects of carbon-based zinc oxide nanoparticles (CZnONPs) and graphene-based zinc oxide nanoparticles (GZnONPs) on quorum sensing (QS), antibiotic resistance genes (ARGs) and microbial community changes during cattle manure production. The manure zinc content was significantly reduced in GZnONPs group. In the QS pathway, the autoinducer gene increases significantly in Control group, while the transporter and repressor genes experience a substantial increase in CZnONPs group. These results contributed to the significantly decreased the abundance of ARGs in GZnONPs group. The co-occurrence network analysis revealed a correlation between core ARGs and QS-related KEGG Orthology or ARGs’ hosts, indicating that the selective pressure of zinc influences microbial QS, forming a unique ARG pattern in in vivo anaerobic fermentation. These findings suggest that implementing nutritional regulation in farming practices can serve as a preventive measure to mitigate the potential transmission of ARGs resulting from livestock waste.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.