Abstract

BackgroundOrganic zinc sources for the treatment of zinc deficiency or as a supplement to a specific diet are increasingly needed. Zinc-enriched yeast (ZnYeast) biomass is a promising nutritional supplement for this essential micronutrient. However, these products are not yet authorized in the European Union and a clear position from the European Food Safety Authority on the use of ZnYeast as a zinc supplement is pending, demanding more data on its bioavailability. ObjectiveThe study aimed to produce a ZnYeast based on a Saccharomyces genus (S. pastorianus Rh), characterize its zinc enrichment quota, cellular distribution of zinc, and evaluate its zinc bioavailability after human digestion by comparing it to commonly used inorganic and organic zinc supplements (ZnO, ZnSO4, zinc gluconate, and zinc aspartate). Method and Main findingsThe zinc-enriched S. pastorianus Rh contained 5.9 ± 1.0 mg zinc/g yeast, which was predominantly localized on the cell surface according to its characterization on the microscale with scanning electron microscopy (SEM) with energy-dispersive X-ray (EDX). Combined experiments with a human in vitro digestion model and the in vitro intestinal cell model Caco-2 showed that intestinal zinc bioavailability of digested yeast biomass was comparable to the other zinc supplements, apart from ZnO, which was somewhat less bioavailable. Moreover, zinc released from digested ZnYeast was available for biological processes within the enterocytes, leading to mRNA upregulation of metallothionein, a biomarker of intestinal zinc status, and significantly elevated the cellular labile zinc pool. ConclusionsOur findings demonstrated that ZnYeast represents a suitable nutritional source for organically bound zinc and highlighted optimization strategies for future production of dietary ZnYeast.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call