Abstract

Zinc and copper ions can modulate the activity of glutamate receptors. However, labile zinc and copper ions likely represent only the tip of the iceberg and other neuronal functions are suspected for these metals in their bound state. We performed synchrotron X-ray fluorescence imaging with 30 nm resolution to image total biometals in dendrites and spines from hippocampal neurons. We found that zinc is distributed all along the dendrites while copper is mainly pinpointed within the spines. In spines, zinc content is higher within the spine head while copper is higher within the spine neck. Such specific distributions suggested metal interactions with cytoskeleton proteins. Zinc supplementation induced the increase of β-tubulin content in dendrites. Copper supplementation impaired the β-tubulin and F-actin networks. Copper chelation resulted in the decrease of F-actin content in dendrites, drastically reducing the number of F-actin protrusions. These results indicate that zinc is involved in microtubule stability whereas copper is essential for actin-dependent stability of dendritic spines, although copper excess can impair the dendritic cytoskeleton.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.