Abstract

In this research, the zinc–aluminum layered double hydroxide (Zn–Al LDH) was synthesized and structurally and morphologically characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and N2 adsorption–desorption techniques. The obtained nano-structured inorganic material was employed as an innovative nano-sorbent for separation of Reactive Yellow 84 (RY84) dye from aqueous solutions, which can be spectrophotometrically monitored at λ = 359 nm. The effect of several parameters such as type of interlayer anion in Zn–Al LDH structure, pH, sample flow rate, elution conditions, amount of nano-sorbent, sample volume and co-existing ions on the retention efficiency was investigated and optimized. The results showed that trace amounts of the RY84 could be retained using a column packed with 300 mg of the Zn–Al(NO3 −) LDH at pH 8 and stripped by 2.5 mL of 3.0 mol L−1 NaOH. Under the optimum experimental conditions, the limit of detection and the relative standard deviation were 0.04 μg mL−1 and 1.8 %, respectively. The calibration graph using the presented solid phase extraction system was linear in the range of 0.15–1.5 μg mL−1 with a correlation coefficient of 0.9982. The method was successfully applied to removal of RY84 from several textile wastewater effluents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call