Abstract

Exposure of semiconfluent cultures of Madin-Darby canine kidney cells to 10 μ m zinc leads to a change in the organization of the actin filament system. Most of the stress fibers at the basal end of the cell are lost and the actin associated with the lateral membrane and junctional regions appears to retract into the cytoplasm. In addition, at the base of the cell in regions of cell-substratum contact, dense, actin-rich plaques appear. These alterations in actin filaments are associated with a change in cell shape. Microtubules were unaffected by exposure to 10 μ m zinc. At zinc concentrations ≥50 μ m the microtubules depolymerized. Exposure to cadmium alters the actin filaments as well but the effect is different from the change seen with zinc. When the cells are exposed simultaneously to zinc and cadmium the cells appear the same as they would if exposed to zinc alone. Exposure of MDCK cells to either metal, individually or in combination, results in a significant and similar increase in F-actin content as determined spectrofluorometrically. The changes in organization and amount of F-actin are associated with a reduction in the ability of the cells to remain attached to the substrate, a toxic effect of these metals with regard to epithelial function. The results indicate that zinc, an essential metal, and cadmium, a highly toxic metal, interact with the actin cytoskeleton in intact cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.