Abstract

The phenomenon of fixation of added zinc in soils considerably affects the availability and efficiency of applied zinc. Pertaining to this situation, different land-use soil samples across the valley were analysed for various physico-chemical properties and adsorption capacities. The results showed that the soils were slightly acidic to alkaline in reaction and differ far and wide in other soil properties. Cation exchange capacity (CEC) of the soils showed little variation between the samples and varied from13.3 to 17.2 cmol(p+) kg-1 with an average value of 15.1 cmol(p+) kg-1of soil. The maximum of zinc adsorption were greatly influenced by soil organic matter, clay content and CEC of the soils. The data was fitted to Langmuir and Freundlich equations and the results yielded that the Freundlich equation showed better fit to the sorption data at higher zinc concentrations. However, both the models were having satisfactory results for the obtained data.

Highlights

  • Zinc (Zn) is essential for the normal growth and development of plants its content in soils is low compared with that of other essential nutrient elements.[1]

  • Result and Discussion Physico-Chemical Characteristics The detailed physical characteristics of the soils are represented in figure-2 which reveals that the sand, silt and clay content are in the range of 18.20 to 25.90, 41.97 to 56.10 and 23.40 percent with mean value of 22.76, 50.80 and 26.71 percent, respectively

  • Zinc adsorption information was tastefully portrayed by both Langmuir and Freundlich adsorption isotherms over the whole focuses utilized Freundlich isotherms gave a best fit

Read more

Summary

Introduction

Zinc (Zn) is essential for the normal growth and development of plants its content in soils is low compared with that of other essential nutrient elements.[1].

Methods
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.