Abstract

Amorphous phosphate granules are present in vertebrate and invertebrate organisms. The functions attributed to these structures depend on their mineral contents and organic matrix composition. In the present study we have determined zinc concentrations in the hepatopancreas of the crab Ucides cordatus from regions contaminated with zinc, and the elemental composition of hepatopancreal phosphate granules. Organisms were collected from the contaminated areas of Sepetiba Bay (SB) and Guanabara Bay (GB), and from a non-contaminated area, Ribeira Bay (RB). The first two sites are located near the metropolitan region of Rio de Janeiro city, Brazil. Atomic absorption spectroscopy (AAS) showed a significant difference (P<0.05) for zinc concentration in the hepatopancreas from organisms collected at the contaminated sites GB (210 +/- 20 microg/g dry weight) and SB (181 +/- 16 microg/g dry weight) compared to the non-contaminated site RB (76 +/- 14 microg/g dry weight). Phosphate granules isolated from hepatopancreatic tissue were studied by electron diffraction (ED), energy dispersive X-ray analysis (EDX) and electron spectroscopic imaging (ESI). ED of granules presented no diffraction spots, indicating that these structures are in an amorphous state, while EDX of granules isolated from a contaminated area contained P, Ca and Zn. Mg, Cl and Fe were also found in some of the spectra. ESI showed that O, P and Ca were colocalized in the mineralized layers of most granules observed. The correlation between the results obtained by AAS and those obtained by microanalytical techniques suggests that the hepatopancreatic granules of U. cordatus may be related to the phenomenon of heavy metal retention.

Highlights

  • Amorphous phosphate granules are present in vertebrate and invertebrate organisms

  • It has been shown that the hepatopancreatic granules of Helix aspersa and Carcinus maenas consist predominantly of pyrophosphate and orthophosphate anions respectively, with calcium and magnesium as cations

  • It is believed that the incorporation of Mg2+ into the calcium pyrophosphate lattice may account for the amorphous state of the granules, permitting the incorporation of other cations into the structure [11,16]

Read more

Summary

Introduction

Amorphous phosphate granules are present in vertebrate and invertebrate organisms. The functions attributed to these structures depend on their mineral contents and organic matrix composition. Key words · Phosphate granules · Hepatopancreas · Zinc · Energy dispersive X-ray analysis · Atomic absorption spectroscopy · Electron spectroscopic imaging

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.