Abstract

We study the quantum phase transition of interacting electrons in quantum wires from a one-dimensional (1D) linear configuration to a quasi-1D zigzag arrangement using quantum Monte Carlo methods. As the density increases from its lowest values, first, the electrons form a linear Wigner crystal, then, the symmetry about the axis of the wire is broken as the electrons order in a quasi-1D zigzag phase, and, finally, the electrons form a disordered liquidlike phase. We show that the linear to zigzag phase transition is not destroyed by the strong quantum fluctuations present in narrow wires; it has characteristics which are qualitatively different from the classical transition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.