Abstract

The motions of myosin filaments actively sliding along suspended actin filaments were studied. By manipulating a double-beam laser tweezers, single actin filaments were suspended between immobilized microbeads. When another beads coated with myosin filaments were dragged to suspended actin filaments, the beads instantly and unidirectionally slid along the actin filaments. The video image analysis showed that the beads slid at a velocity of ca. 3–5 μm/s accompanied with zigzag motions. When beads were densely coated with myosin filaments, the sliding motions became straight and smooth. The obtained results indicate that (1) during the sliding motions, the interaction between myosin heads and actin filaments is weak and susceptible to random thermal agitations, (2) the effects of thermal agitations to the sliding motions of myofilaments are readily suppressed by mechanical constraints imposed to the filaments, and (3) the active sliding force is produced almost in parallel to the filaments axis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.